燃料电池产业链:基础设施先行,加氢站和氢气产业链率先受益

燃料电池汽车由于能量密度高的优势被普遍认可将成为中国交通领域电动化的重要组成部分,尤其在重载+高续航领域,而随着越来越多关键零部件的国产化,燃料电池成本迅速下降,经济性逐渐显现,行业爆发就在最近两年

作者:张帅/彭聪 

来源:国金证券研究所

基本结论:

■ 燃料电池汽车由于能量密度高的优势被普遍认可将成为中国交通领域电动化的重要组成部分,尤其在重载+高续航领域,而随着越来越多关键零部件的国产化,燃料电池成本迅速下降,经济性逐渐显现,行业爆发就在最近两年。

■ 加氢站和氢气为代表的基础设施的完善是燃料电池产业发展与普及的前提:

氢气:便捷地获得低成本的氢气成为燃料电池行业能否顺利发展的关键,行业早期的采用氯碱工业副产氢加上气氢拖车运输可以解决需求;随着需求增加,天然气与煤炭制氢未来也将成为重要的过渡解决方案;而未来随着光伏等可再生能源发电成本逐渐下降,光伏+燃料电池反向制氢或高效电解水装置将成为主流,将大大改变整个能源结构。   

目前氢气供应商区域性强,相对分割,未来随着氢气需求增加、氢气按照能源气体管理,大型能源巨头将在其中扮演重要角色,届时氢将成为像现在的石油一样重要的大宗能源品。目前有氢气的企业主要是氯碱化工企业和焦化企业,如华昌化工、美锦能源、滨化股份等。

加氢站是燃料电池产业发展的关键基础设施,目前有大型公共加氢站和小型自制氢加氢站两种方案,而以前者为主,后者包括本田的SHS系统目前由于成本问题还未能普及。加氢站行业发展需要解决资金、法规、盈利模式三方面问题,目前都已经初步有了解决方案。

加氢站设备:目前国内2018年已经建设了35Mpa加氢站十几座,出货量超过20个站,70Mpa站也具备生产能力,设备方面,除部分核心零部件从国外进口外,基本都可以国产化。主要加氢站供应商包括富瑞氢能、华气厚普等, 加氢站建设运营的有上海氢枫等企业。

投资建议:

■ 加氢站和氢气作为燃料电池产业的关键基础设施,具备长期投资价值,我们认为加氢站及关键设备、加氢站运营、氢气都将成为巨大的市场,短期设备机会更大,长期看氢气市场规模惊人。相关公司方面,推荐年产5亿方焦化副产氢气的美锦能源(000723.sz)、加氢站供应商厚普股份(300471.sz)、国内加氢站主要供应商富瑞氢能(未上市),建议关注京城股份(600860.sh)、滨化股份(601678.sh)。

风险提示:

■ 燃料电池产业发展不达预期的风险。1)燃料电池相关关键技术研发进度和国产化水平不及预期,造成成本下降缓慢,影响行业发展;2)加氢站等基础设施建设进度和数量不及预期,影响下游车辆落地;3)国家对产业支持力度不及预期风险。


中国燃料电池进入产业化阶段

万亿级产业拉开序幕

>>氢燃料电池技术满足产业化需求,能源革命开启

目前的燃料电池从寿命、性能、资源和成本等方面已经达到产业化条件,满足下游交通和备电等领域应用:(1)燃料电池车辆寿命和运营里程达到传统汽柴油车水准,在英国和美国均有燃料电池公交车(FCEB)运营寿命超过2.9万小时,无需大修或更换燃料电池组;(2)低温启动温度可以达到-30℃;(3)铂金催化剂用量较小,未来不会引起铂金资源短缺,目前国际先进催化剂耗铂水平可达到0.125g/kW,未来单车铂金用量可以低于5g,与传统柴油车尾气催化剂铂用量相当,并且催化剂在往低铂和无铂方向发展;(4)成本快速下降,日韩燃料电池汽车预计2025年能达到传统内燃机车成本水平;(5)氢耗与油耗成本持平,并且随着规模扩大,氢气成本存在较大下行空间。

氢燃料电池具有零排放、零污染的特性,被认为是未来清洁环保的理想技术,是终极新能源动力解决方案。燃料电池本质上是发电机,下游应用场景广泛,可以应用于交通领域和发电领域等。我们认为燃料电池发展将掀起一轮能源革命,氢将取代一部分石油,成为能源体系中的重要一环,未来氢燃料电池市场规模可达万亿级别。

>>国家政策循序渐进,地方政府积极推动

中国对于燃料电池发展支持处于循序渐进状态,我国从 2001 年就确立了“863 计划电动汽车重大专项”项目, 确定三纵三横战略, 以纯电动、混合电动和燃料电池汽车为三纵,以多能源动力总成控制、驱动电机和动力蓄电池为三横。近期随着燃料电池产业发展逐渐成熟,中国在燃料电池领域的规划纲要和战略定调已经出现苗头,支持力度逐渐加大,政策从产业规划、发展路线和补贴扶持全方位支持燃料电池产业发展。

产业规划:2016年11月29日,《“十三五”国家战略性新兴产业发展规划》提出系统推进燃料电池汽车研发和产业化。加强燃料电池基础材料与过程机理研究,推动高性能低成本燃料电池材料和系统关键部件研发。加快提升燃料电池堆系统可靠性和工程化水平,完善相关技术标准。推动车载储氢系统以及氢制备、储运和加注技术发展,推进加氢站建设。到2020年,实现燃料电池汽车批量生产和规模化示范应用。        

发展路线:2016年10月,汽车工程年会发布的《节能与新能源汽车技术路线图》中指出,到2020年燃料电池汽车在公共服务领域的示范应用要达到5000辆的规模;到2025年,实现氢燃料电池汽车的推广应用, 规模达到5 万辆; 到2030 年, 实现氢燃料电池汽车的大规模推广应用, 氢燃料电池汽车规模超过1百万辆。

补贴扶持:2016 年 12 月 30 日财政部、科技部、工业和信息化部和发改委发布的《新能源汽车推广补贴方案及产品技术要求》中规定除燃料电池汽车外,各类车型 2019-2020 年中央及地方补贴标准和上限,在现行标准基础上退坡 20%,对燃料电池汽车补贴延续至 2020 年不退坡,对于燃料电池乘用车,给予 20 万元/辆补贴;对于燃料电池小型货车、客车,给予 30 万/辆补贴;对于燃料电池大中型客车,中重型货车,给予 50 万/辆补贴。2018年发布《关于调整完善新能源汽车推广应用财政补贴政策的通知》,燃料电池汽车补贴基本保持不变。

地方政府中,富氢优势、弃电较多或者产业领先为代表的地区重视燃料电池发展。多地市兴建氢能产业园区,氢能小镇和产业集群等,推动燃料电池公交、物流车示范运营,截至目前超过20地市明确推动氢燃料电池产业发展。目前仅上海、武汉、山东、苏州、张家口、佛山、盐城和大同等地规划显示,到2020年燃料电池汽车数量将超过1.5万辆。

>>中国燃料电池浪潮开启,远期万亿规模可期

中国燃料电池产业目前与2012年锂电池极为相似,政策自上而下支持,技术达到产业化条件,产业链国产化进程开启,企业加快布局速度,资本市场投融资热度持续上升。

中国燃料电池汽车发展路径明确:前期通过商用车发展,规模化降低燃料电池和氢气成本,同时带动加氢站配套设施建设,后续拓展到私人用车领域。优先发展商用车的原因在于:一方面公共交通的平均成本低,而且能够起到良好的社会推广效果,形成规模后带动燃料电池成本和氢气成本下降;另一方面商用车行驶在固定的线路上且车辆集中,建设配套的加氢站比较容易。当加氢站数量增加、氢气和燃料电池成本降低时,又会支撑更多燃料电池汽车。

2017年是中国燃料电池汽车元年,全国燃料电池汽车产量达到1272辆。2018年燃料电池汽车商业化运营的元年,产量达到1619辆,目前国家补贴到2020年不退坡,在国家和地方补贴的支持下,燃料电池汽车产业开启以补贴为基石的内生性增长时代。

截止2018年底,全国投入运营车辆约694辆,其中公交234辆左右,物流车约300辆,轻客160辆。其中,燃料电池物流车在上海已经开展商业化运营,目前在运营数量达到300辆左右,运营里程超过400万km,用户包括京东、申通快递、盒马鲜生、宜家等物流用户。

我们预计随着成本的持续下降,产业规模将得到迅速扩大,行业将在未来十年迎来百倍增长,到2030年燃料电池汽车市场规模达到5000亿,车用燃料电池市场规模达到1200亿,远期燃料电池汽车和热电联产等市场规模可达万亿。

2017-2020,燃料电池产业处于商业化运营的导入期,产业在政府补贴扶持下实现盈利。同时燃料电池成本与氢气成本随着规模扩大而稳步下降,预计到2020年,系统成本可低于6000元/kW,富氢地区氢气售价可达30元/kg,燃料电池汽车产销量达到万辆。

2021-2025,燃料电池进入快速增长期,产业在合理补贴退坡情况下实现盈利。到2025年系统成本达到2000元/kW,氢气售价降低到28元/kg,燃电池汽车产销量达到25万辆。

2026-2030,燃料电池进入爆发期,产业无需补贴可以实现内生性增长。到2030年系统成本不高于1000元/kW,氢气售价23元/kg,燃料电池汽车产销量达到150万辆以上,燃料电池汽车市场规模达到5000亿。

基础设施是产业痛点

加氢站搭台奠定基础 

>>加氢站引发重视,业界呼吁推动基础设施发展

国内燃料电池汽车的发展仍处于导入期阶段,主要制约因素在于两个方面: 一是基础配套设施不完善(加氢站少),二是燃料电池产业链国产化程度有待提升,目前电堆产业链达到50%,成本依然较高。

加氢站之于燃料电池汽车,犹如加油站之于传统燃油汽车、充电站之于纯电动汽车,是支撑燃料电池汽车产业发展必不可少的基石。燃料电池汽车的发展和商业化离不开加氢站基础设施的建设。若没有完善的加氢站基础设施布局,则很难支撑起燃料电池车应用规模的扩大,因此加氢站的建设是产业发展的关键因素。

国内加氢站较少,建设速度需要继续提升。2016年初全国运营加氢站只有3座,北京永丰、上海安亭和郑州宇通。经历2年多的发展;目前正在运营的超过19座,分别位于北京、上海、江苏、大连、安徽、河南、广东等地。2018年开工建设的加氢站23座,规划加氢站44座。虽然这两年加氢站建设提速,但是相对于氢燃料电池产业需求,加氢站数量远远不够。

加氢站缺乏现状引起产业界关注,2019年两会期间,众多能源巨头和车企和高管均有推动加氢站建设建议,主要包括:(1)制定加氢站等基础设施规划;(2)健全加氢站建设、规范和审批制度;(3)加大加氢站补贴力度。

>>加氢站工作原理和建设模式

现有加氢站技术来源于天然气加气站,有两种建设方式:1)站内制氢供氢加氢站技术;2)外供氢加氢站技术。中国加氢站以外供氢路线为主。

1)站内制氢加氢站技术:来源于天然气管网标准加气站原理,即加氢站内有制氢设备(如天然气重整制氢)产生氢气(相当于天然气管道输送来的气源)和加气站设备的组合。

2)外供氢加氢站技术:来源于天然气母站和子站原理,即从外面工厂(相当于母站提供气源)经加氢站(子站)二次加压完成对外加气。

加氢站的工作原理(以外供氢加氢站为例):氢气通过管束槽车运输至加氢站,经由氢气压缩机增压后储存至站内的高压储罐中,再通过氢气加气机为燃料电池汽车加注氢气。当管束槽车的压力足够高时,可从槽车中直接给车辆加氢;压力不够部分从氢气高压储罐中给汽车进行补充氢气。

实际操作中,氢气储罐可由多个压力级别不同的储罐并联而成,先将低压储罐中的氢气用于加注,直到低压储罐与车载容器达到压力平衡,再换为高压储罐进行加注。

>>加氢站核心设备依赖进口,国产化逐步开启

加氢站的主要设备:包括储氢装置、压缩设备、加注设备、站控系统等,其中压缩机占总成本较高(约30%)。目前设备制造的发展方向主要是加速国产化进程,从而降低加氢站的建设成本,促进氢能产业链的发展。

高压储氢装置:一般有两种方式,一种是用具有较大容积的气瓶,该类气瓶的单个水容积在600L~1500L之间,为无缝锻造压力容器;另一种是采用小容积的气瓶,单个气瓶的水容积在45L~80L。从成本角度看,大型储氢瓶的前期投资成本较高,但后期维护费用低,且安全性和可靠性较高。北京永丰加氢站储氢装置是美国 CPI 公司生产的 TAE/EVO-121 氢气高压储罐。

氢气压缩设备:常用的氢气压缩设备为隔膜式压缩机,该型压缩机靠金属膜片在气缸中作往复运动来压缩和输送气体。氢气压缩机在加氢站中占据重要地位,目前我国加氢站所采用的氢气压缩机仍需外购。未来国内加氢站与生产压缩机的外资企业加强合作以及加快国产化速度的情况下,有望将压缩机的成本减少50%以上。

氢气加注设备:氢气加注设备与天然气加注设备原理相似,由于氢气的加注压力达到35Mpa,远高于天然气25Mpa的压力,因此对于加氢机的承压能力和安全性要求更高。根据加注对象的不同,加氢机设置不同规格的加氢枪。如安亭加氢站设置TK16和TK25两种规格的加氢枪,最大加注流量分别为2kg/min和5kg/min。加注一辆轿车约用3-5分钟,加注一辆公交车约需要10-15分钟。

站控系统:作为加氢站的神经中枢,站控系统控制着整个加氢站的所有工艺流程有条不紊的进行,站控系统功能是否完善对于保证加氢站的正常运行有着至关重要的作用。

中国所生产的加氢站设备各项技术指标仍有欠缺,但是目前国产化已经开启,业内企业在各领域均推出自主产品。

高压储氢装置:2018年1月,安瑞科生产87.5MPa缠绕大容积储氢容器用于863项目70MPa加氢站。该储氢容器率先采用了碳纤维全缠绕增强钢内胆的结构形式,解决了结构设计、成型工艺、密封、氢脆等多个技术难题,填补了国内空白,技术达到世界领先水平。

氢气压缩设备:北京天高和江苏恒久机械均有隔膜压缩机研发,北京天高压缩机产品运用在国内近十座加氢站的项目,参与了国家科技部环保新能源“863”计划中的汽车加氢项目。

氢气加注设备:张家港富瑞氢能加氢机取得国内整机防爆认证,并且供应国内超过15座加氢站项目。上海舜华35MPa加氢机已成功应用于世博会加氢站和大运会加氢站。

大规模低成本氢气是产业关键,氯碱制氢+气氢拖车是当下合理路线

氢之于燃料电池,正如石油之于传统汽车、锂矿石之于电动车,为必不可少之基础。燃料电池产业的发展,便捷地获得低成本的氢燃料成为行业能否顺利发展的关键。氢气的成本主要包括制氢和储运成本,当下氢气核心在于采取合理制氢和储运方式。

我们认为现阶段最佳的制氢和运氢方式搭配为:氯碱工业副产氢+气氢拖车运输,其氢气成本范围在17.9~19.2元/kg该氢源路线的选择主要是基于成本和环保的角度考虑的。此外,通过测算氢气作为燃料的经济性,我们得出结论:如果使氢燃料电池车具有较强的竞争力(百公里耗氢成本较百公里耗油成本低20%以上),则氢气到站成本需控制在22.78元/kg以下。

氯碱工业副产氢是目前最现实的大规模燃料电池用氢气的来源:在现阶段,选择成本较低、氢气产物纯度较高的氯碱工业副产氢的路线,已经可以满足下游燃料电池车运营的氢气需求;在未来氢能产业链发展得比较完善的情况下,利用可再生能源电解水制氢将成为终极能源解决方案。

气氢拖车是未来一段时间的主要运输方式。基于200km左右运输距离和每天10吨的运输规模来看,气氢拖车的成本可以达到2.02元/kg, 液氢罐车是未来的重要方向,其运输能力是气氢拖车的十倍以上,配合大规模可再生能源或者核电的弃电,是燃料电池大规模部署后的氢气解决方案。

制氢分析:氯碱制氢可满足当前下游需求,化石燃料制氢成本低廉,可再生能源电解水助力实现未来零排放

目前,制备氢气的几种主要方式包括氯碱工业副产氢、电解水制氢、化工原料制氢(甲醇裂解、乙醇裂解、液氨裂解等)、石化资源制氢(石油裂解、水煤气法等)和新型制氢方法(生物质、光化学等)。

我们认为氯碱工业副产氢是现阶段最适合的制氢方式,主要基于以下两点判断:

(1)从制氢工艺的成本和环保性能角度来看,氯碱制氢的工艺成本最为适中,且所制取的氢气纯度高达99.99%,环保和安全性能也较好,是目前较为适宜的制氢方法。分析如下:

水煤气法制氢成本最低,适用规模大,但是二氧化碳排放量最高,且所产生氢气含硫量高,如果用于燃料电池,会导致燃料电池催化剂中毒,如果应用脱硫装置对其产生氢气进行处理,不但增加了额外的成本,对技术标准的要求也很高;

石油和天然气蒸汽重整制氢的成本次之,约为0.7~1.6元/Nm3,能量转化率高达72%以上,但环保性不强,未来可以考虑通过碳捕捉技术减少碳排放;

氯碱制氢工艺成本适中,在1.3~1.5元/Nm3之间,且环保性能较好,生产的氢气纯度高,目前而言适用于大规模制取燃料电池所使用的氢气原料,也是可实现度最高的氢气来源。

甲醇裂解和液氨裂解成本较氯碱制氢高50%左右,较化石资源制氢技术前期投资低、能耗低,较水电解法制氢单位氢成本低。

水电解法制氢成本最高,在2.5~3.5元/Nm3之间,且成本在不断降低,碳排放量低,且在应用水力、潮汐、风能的情况下能量转化率高达70%以上。在未来与可再生能源发电紧密结合的条件下,水电解法制氢将发展成为氢气来源的主流路线。

(2)从理论储备和经济储备的角度来看,氯碱工业副产氢的经济储备能够满足长三角地区对于氢气的需求,全国范围来看也储备充足。我们通过统计氯碱工业和其他化工原料(天然气、甲醇、液氨等)的产能,计算了理想情况下氢气的理论产能和经济产能(如图表16)。

 假设(1)产能利用率为76%;(2)化工原料和天然气裂解制氢的部分相当于原有产能的3%;(3)燃料电池乘用车以丰田Mirai作为数据样本(储氢量5kg,续驶里程482km);(4)燃料电池物流车以E-truck为数据样本(储氢量7.5kg,续驶里程400km,载重量4-8吨);(5)乘用车年行驶里程数取值1万公里;(6)物流车年行驶里程数取值12万公里。

我们得出结论:目前全国范围内的氯碱工业制取的氢气相当于76万吨/年的产能,可供34万辆燃料电池物流车使用一年,或者可供243万辆燃料电池乘用车使用一年。如加上现有天然气、甲醇、液氨裂解产生氢气的量,约为202万吨/年,可满足90万辆物流车或648万辆乘用车一年的氢气需求量。

我们以目前燃料电池车数量较集中的江苏上海一带作为中心,200km、500km作为半径,划定了两种不同的范围,分别考虑其产能。可以发现,在所划定的200km范围内,氯碱副产氢气产能可以供14万辆物流车或99万辆乘用车使用;在500km范围内,氯碱副产氢气产能可供16万辆物流车或112万辆乘用车使用。

>>氯碱工业副产氢:目前最现实的大规模燃料电池用氢气的来源

氢气的制备技术和存储运输等技术等,均影响到燃料电池所用燃料是否能方便快捷低成本地获得。其中氢能的大规模、低成本和高效制备是首先需要解决的关键性难题。根据Hydrogen Analysis Resource Center的统计数据显示,全球制氢能力约保持在1440百万标准立方英尺/天。其中中国的制氢能力保持在1320.86吨/天以上。

根据日本经济产业省的统计分析,2014年日本氢气售价的构成主要由氢气原材料、氢气的生产运输成本、加氢站的固定和可变成本以及加氢站运营维护几个部分组成。其中涉及到氢气的制备和储运的成本占38%。而对比看来,汽油售价的重要组成部分则是汽油的消费税。

影响我国氢气售价的最主要因素是包括制氢和储运氢气在内的氢气成本部分。比较日本和我国的加氢站氢气售价价格组成可以发现,影响日本氢气售价的最主要的两个因素是氢气成本(约占38%)和加氢站固定成本(约占26%),而影响我国氢气售价最主要的因素是氢气成本(约占65%)。

根据氢气的原料不同,氢气的制备方法可以分为非再生制氢可再生制氢,前者的原料是化石燃料,后者的原料是水或可再生物质。

制备氢气的方法目前较为成熟,从多种能源来源中都可以制备氢气,每种技术的成本及环保属性都不相同。主要分为五种技术路线:氯碱工业副产氢、电解水制氢、化工原料制氢、石化资源制氢和新型制氢方法等。目前制备氢气的最主要问题是如何控制制氢过程中的碳排放 、成本方面,未来技术的主要发展方向是使用可再生能源电解水,包括生物制氢和太阳能制氢等。

全球来看,目前主要的制氢原料96%以上来源于传统能源的化学重整(48%来自天然气重整、30%来自醇类重整,18%来自焦炉煤气),4%左右来源于电解水。

日本盐水电解的产能占所有制氢产能的63%,此外产能占比较高的还包括天然气改制(8%)、乙烯制氢(7%)、焦炉煤气制氢(6%)和甲醇改质(6%)等。

目前国内主流的氢气来源为焦炉煤气制氢,但考虑到所制得的氢气纯度不高(含硫),且制氢的过程耗时长、对环境造成污染,如果再经过脱硫脱硝的步骤则增加了制氢的成本。因此在考虑燃料电池所使用的氢气来源时,主要依靠氯碱工业副产氢、天然气、甲醇、液氨重整产生的氢气,未来在体系完善技术加强的情况下将逐步选用可再生能源电解水制氢,打造真正零污染的氢能供应链。

目前燃料电池所使用的氢气来源最主要的途径是来源于氯碱工业的副产品。虽然从整个氢气产量来看,利用煤作为原料来制备氢气占全部制氢产量的2/3,但是由于煤制氢气中含有杂质较多,对于纯化装置要求较高从而增加了成本,因此作为氯碱工业副产品的氢气用于供应给燃料电池作为原料的路线较为常见。

氯碱厂以食盐水(NaCl)为原料,采用离子膜或石棉隔膜电解槽生产烧碱(NaOH)和氯气(Cl2),同时可得到副产品氢气。(2NaCl+2H2O→2NaOH+H2↑+Cl2↑)把这类氢气再去掉杂质,可制得纯氢。我国许多氯碱厂都采用PSA提氢装置处理,可获得高纯度氢气(氢纯度可达99%~99.999%)。

PSA 技术是利用气体组分在固体吸附材料上吸附特性的差异 ,通过周期性的压力变化过程实现气体的分离与净化。PSA 技术是一种物理吸附法。PSA具有能耗低、 投资少、 流程简单、 自动化程度高、 产品纯度高、 无环境污染等优点。

根据国家统计局的数据,2015年,我国氯碱厂产能为3961万吨,产量为3028.1万吨。根据氯碱平衡表,烧碱与氢气的产量配比为40:1,理论上将产生氢气75.7万吨,即85亿Nm3氢气,理论上可以供243万辆乘用车使用。但考虑氯碱厂区域分布、运输距离、期间损耗及不同车型的耗氢量,几十万辆的规模问题不大。

目前氯碱厂对氢气的利用主要是两个方面,一是与氯气反应生产盐酸,另一方面将氢气直接燃烧,产生热能。但是后者需要的投资较大,因此大量的氯碱厂实际上将氢气都直接放空了。这样对于氢气资源实质上是一种浪费,如能合理收集氯碱厂所生产的氢气,对于发展燃料电池而言是一种合理的途径。

氯碱工业副产制氢的成本约为14.6~16.85元/kg(即1.3~1.5元/Nm3)。氯碱工业副产制氢的方法成本较低,且所制备的氢气纯度能达到99.99%以上,同时理论储量和经济储量都相对较高,足以满足现有燃料电池对于氢气的需求量。

>>水电解制氢:利用可再生能源电解水制氢助力未来实现零排放

电解水技术与光解水、热化学制氢的不同特点电解水技术成熟、设备简单、无污染,所得氢气纯度高、杂质含量少,适用于各种场合,缺点是耗能大、制氢成本高;光解水技术目前难点是催化剂研制;热化学循环制氢系统更复杂,但制氢效率较高,结合可再生能源,利用效率更高。

目前商品化的水电解制氢装置的操作压力为0.8~3Mpa,操作温度为80~90℃,制氢纯度达到99.7%,制氧纯度达到99.5%。

水电解制氢的关键是如何降低电解过程中的能耗,提高能源转换效率。电解水制氢一般都以强碱、强酸或含氧盐溶液作为电解液。目前商用电解槽法,能耗水平约为4.5~5.5kwh/Nm3H2,能效在72%~82%之间。折算下来,水电解制氢成本相当于30~40元/kg,用电解法生产气态氢的价格比汽油约高65%,如果生产液态氢,则比汽油高约260%以上。

热化学循环水分解制氢可耦合核能、太阳能甚至是工业废热进行高效制氢,每一步反应条件温和,理论上不会排放任何污染物;若能在高温耐腐蚀材料等方面实现突破,将是最有希望实现工业化规模应用的技术方式。根据循环过程中使用过的不同物质,一般将热化学循环水分解制氢分成4大类:金属氧化物体系、金属卤化物体系、含硫体系以及电解-热化学联合的杂化体系。

使用电解水的方法大规模制氢有两条主要的降本途径:1)降低电解过程的能耗;2)充分利用可再生能源,使用弃风弃水弃光所产生电能进行电解水。

各国通过研发新型技术降低电解过程中的能耗,但是根据热力学原理,电解水制备1m3氢气和0.5m3氧气的最低电耗为2.95度电。由此可知,该途径降低成本的空间有限、技术复杂。

日本的新型技术将能耗降低到3.8kwh/Nm3H2;美国GE公司开发的固体高分子电解质(SPE)水解法,以离子交换膜作为隔膜和电解质,使电解过程的能耗大大降低。针对电解水技术方面的改进主要集中在电解池、聚合物薄膜电解池和固体氧化物电解池等种类,电池能效率由70%提高到90%,但考虑到发电效率,实际上电解水制氢的能量利用效率不足35%。

根据我们的测算,在不考虑运输成本的条件下,假设运维和固定投资的成本占电解水制氢的总成本的25%,计算出水电解制氢达到能够和汽油竞争的水平,电价必须保证在0.31元/kwh以下,如果考虑比汽油的价格更有竞争力的情况,则对应较92号汽油价格低10%、20%、30%的情况,电价分别需要达到0.28元/kwh、0.25元/kwh和0.22元/kwh以下。

此外,大规模制氢也不能完全依赖于谷电电价。 且目前电价政策对于这一块没有特殊的倾斜,因此一般考虑使用弃风弃光所产生的电能电解水(电价能达到0.25元/kwh左右)。

我国可再生能源丰富,每年弃水弃风的电量都可以用于电解水。我国拥有水电资源3.78亿kw,年发电量达到2800亿kwh。水电由于丰水器和调峰需要,产生了大量的弃水电能。我国风力资源也非常丰富,可利用风能约2.53亿kwh,相当于水力资源的2/3。但风电由于其不稳定的特性,较难上网,因此每年弃风限电的电量规模庞大。如果将这部分能源充分利用起来,产生的经济效益是可观的。

例如,三峡电站建成后,在每年的5~8月弃水电能高达45亿kwh,即使建设一座180万千瓦的抽水蓄能电站联合运行,三峡电站的弃水电能仍有21亿kwh。若将此电能用于电解水制氢,可生产氢气4~4.5亿Nm3,可见利用水电站的弃水电能来制氢,将会使我国出现一个巨大的氢源基地。

目前燃料电池汽车的分布主要以东部沿海城市为主,如果考虑到氢气的运输成本,使用中西部地区的弃水电能进行氢气的制备尚不具备成本优势。

2010年至2015年,我国弃风电量累计达到997亿千瓦时,直接经济损失超过530亿元。仅过去一年弃风电量就达到339亿千瓦时,直接经济损失超180亿元,几乎抵消全年风电新增装机的社会经济效益。解决这样的一个现状的合理方式之一是采取储电的方法。若利用氢能燃料电池来储电,则可解决风能发电的平衡问题——利用风能发电的电能来电解水制氢,它成为氢能燃料电池的燃料,而燃料电池又用来储电。这个循环过程,既可解决风能发电的负荷平衡,又可制得一定数量的氢能。

例如,江苏盐城周边有1000多家风电厂,目前所产生的电能无法并网,使用这些风电所产生的电能,结合海水电解技术,所产生的氢气成本可以达到2元/Nm3,相对而言已经具备了和汽油能源竞争的能力。

>>石化资源制氢:天然气裂解制氢为主,水煤气法对脱硫技术要求高

石化资源制氢:主要是天然气裂解制氢路线,燃料电池所用氢气一般不使用煤制氢的技术路线,主要是因为煤制氢存在投资成本高、污染严重和碳排放量大等问题。天然气制氢技术主要包括水蒸气重整、部分氢化、自热重整、绝热催化裂解等。

水煤气法制氢含硫偏高,不适用于燃料电池。水煤气法制氢是传统的煤化工工艺路径。通过无烟煤或者焦炭与水蒸气在高温下反应得到水煤气(C+H2O→CO+H2—热),净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体。最后除去CO2以及CO得到较为纯净的氢气。这种方式制氢量大,成本低。但如果用于燃料电池,则其中含硫量偏高,易使得燃料电池的铂催化剂中毒,损坏染料电池电堆。因此目前尚无法实现大规模生产使用。未来如果脱硫技术提升,则有颠覆氢气来源的可能。

成本方面,天然气裂解制氢的成本约为9~16.85元/kg(即0.8~1.5元/Nm3之间)。我们根据中石化集团经济技术研究院所提供的一些数据测算如图表34。天然气制氢虽然成本方面有优势,但需要针对性地制氢,对于前期投资要求较高,且制氢过程会产生一定的污染。

天然气重整制氢的成本相对石油售价和天然气售价而言具有竞争力。我们通过将不同能源折算为热量单位(Btu)进行对比(图表35),根据我们的分析和预测,可发现目前同等热值的可再生能源电解水成本已经低于交通用以及工业用的石油售价,而天然气重整制氢的成本已经低于上述石油售价及天然气工业用售价。

从能量转换效率的角度来看,天然气重整制氢的方法能量转换效率最高,而乙醇裂解和电解水制氢的方法次之。各种制氢方式的能量转换效率比较如下:

>>化工原料制氢:甲醇制氢技术应用于众多特定场所,但成本较高

甲醇裂解制氢:由于甲醇具有易于运输、易于获得等特点,甲醇制氢技术备受关注,并应用于众多特定的场所。利用甲醇制氢有3种途径:甲醇裂解、甲醇-蒸汽重整和甲醇部分氧化。在这三种方法中,甲醇裂解由于应用范围更广和原料单一的特点具有更强的竞争力。

甲醇制氢与大规模的天然气、重油转化制氢或者水煤气制氢相比,投资省,能耗低;与水电解制氢相比,单位氢气成本低。

化石燃料制氢工艺一般需要在800℃以上的高温下进行。所以转化炉等设备需要特殊材质。同时需要综合考虑能量平衡和利用,不适合小规模制氢。而甲醇转化制氢反应温度低(260~280℃),工艺条件缓和,燃料消耗低。与同等规模的化石燃料制氢装置相比,甲醇-蒸汽转化制氢的能耗是前者的50%。

水电解制氢的成本一般在3~5元/m3,而一套规模为1000m3/h的甲醇-蒸汽制氢转化装置的氢气成本一般不高于2元/m3。

液氨制氢方法由英国化学家亚瑟汀斯利在1894年提出,主要原理是利用液氨和钠单质反应生成氨基化钠,然后氨基化钠将分解成为氮气、氢气以及钠单质。液氨是世界上产量最大的无机化合物之一,通常与丙烷一样被加压储存在液氨罐之内(300psi,约20千帕),液氮虽然可获得性高,但是液氨制氢需要依赖于钌作为催化剂,而钌是一种稀有金属,且在该过程中,分离氢气需要极高的温度。

2015年,英国科学家提出液氨制氢的新方法,将分离氢气的温度降低到了400℃的温度。一个典型的汽车电池都可以提供足够的能量来加热一个小型(1.5立方英寸)钠/氨反应器到达该温度。其设备的输出不能满足一个大型商业设施所需的氢气,但可以扩大到满足一辆氢能燃料电池汽车所需的氢气。

目前丰田、本田和现代所使用的氢气,绝大多数都来自天然气重整制氢,但天然气重整制氢对环境的影响较大,因此如果上述液氨制氢的方法能够推行,可以降低制氢过程对环境的影响。此外,该制氢方式的另一个优势是其使用的罐体与现有的其他气体储存罐类似,这也将降低氢能基础设施建设的成本。

成本方面,液氨制氢目前的成本约为2~2.5元/Nm3,仍比电解水制氢的成本低,如未来有进一步的技术突破,液氨制氢的技术可以拓展到直接用于车载供氢。

氢气储运:气氢拖车满足现阶段要求,液化氢技术是发展方向

运氢的方式主要分为:气氢拖车运输(tube trailer)、气氢管道运输(pipeline)和液氢罐车运输(liquid truck)。氢能供应链中运氢环节定义为包括集中制氢厂的运输准备环节(氢气压缩/液化、存储及加注)和车辆/管道运输过程所涉及所有设备。

从现阶段加氢站对运输距离(<500km,200km为宜)和运输规模(10t/d)的需求来看,氢气最佳的运输方式仍是气氢拖车,其成本可以达到2.02元/kg,而在同等条件下的液氢运输成本可以达到12.25元/kg。未来在液化氢技术达到标准且氢气需求量规模上升(100t/d)的情况下,将考虑采用液氢运输的方式运送氢气。

气氢拖车运输适合小规模、短距离运输情景;气氢管道运输适合大规模、短距离运输情景;液氢罐车运输适合长距离运输。

运输规模和运输距离是对氢气运输影响最大的两个因素,对三种氢气运输方式的成本变化造成不同的影响。根据不同氢气运输方式的变化规律,在运输规模和运输距离确定的情况下,可以选出成本最低的运氢方式。

主要的三种氢气运输方式(气氢拖车、管道输氢和液氢罐车运输)的成本组成可以划分为:设备投资(存储、压缩、液化和加注设备)、电力成本、管道投资成本、运输车辆投资成本(包括车载储氢容器)、车辆燃料成本、人力成本和其他运行维护费用。通过研究我们可以得出结论:

1)对于气氢拖车运输方式,主要受距离因素影响,规模对运氢成本影响比例较小;

2)对于管道输氢方式,管道投资成本在运氢成本中占最大比例,适用于运氢规模大,距离近的情况;

3)对于液氢罐车运输方式,非常适用于大规模氢气长距离运输,运氢成本与运输规模成负相关,规模越大运氢成本越低,与运输距离成正相关,距离越远运氢成本越加上升,但上升幅度远小于气氢拖车。

投资建议

加氢站和氢气作为燃料电池产业的关键基础设施,具备长期投资价值,我们认为加氢站及关键设备、加氢站运营、氢气都将成为巨大的市场,短期设备机会更大,长期看氢气市场规模惊人。相关公司方面,推荐年产5亿方焦化副产氢气的美锦能源(000723.sz)、加氢站供应商厚普股份(300471.sz)、国内加氢站主要供应商富瑞氢能(未上市),建议关注京城股份(600860.sh)、滨化股份(601678.sh)。

美锦能源:副产氢5亿立方米;加氢站,控股锦鸿氢源科技有限公司60%股权,锦鸿氢源从事加氢站建设运营;整车,控股佛山飞驰51.2%股权(飞驰是2018年燃料电池汽车销量第二企业);膜电极,公司持股45%的投资公司鸿锦投资控股广州鸿基51%股权(鸿基是膜电极明星企业)。

厚普股份:加氢站设备,生产的加氢设备分别包括日加氢量50公斤、200公斤、500公斤、1000公斤等产品,自主研发的加氢枪进入样机试用阶段,高压氢气质量流量计已经具备量产能力。

富瑞氢能:未上市企业,储氢瓶产能1万套/年,2018年加氢站设备和车载储氢系统市占率第一。

京城股份:子公司北京天海从事储氢瓶业务;北京天海投资伯肯节能10.91%股权,伯肯节能从事加氢站设备和空压机业务。

滨化股份:公司与北京亿华通科技股份有限公司共同出资设立了山东滨华氢能源有限公司,主要业务方向是为氢燃料电池汽车加氢站提供合格的氢气,目前处于正式投产前的前期准备阶段。

风险提示

燃料电池产业发展不达预期的风险。1)燃料电池相关关键技术研发进度和国产化水平不及预期,造成成本下降缓慢,影响行业发展;2)加氢站等基础设施建设进度和数量不及预期,影响下游车辆落地;3)国家对产业支持力度不及预期风险。


格隆汇声明:文中观点均来自原作者,不代表格隆汇观点及立场。特别提醒,投资决策需建立在独立思考之上,本文内容仅供参考,不作为实际操作建议,交易风险自担。

相关阅读

评论